Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
NPJ Digit Med ; 5(1): 94, 2022 Jul 16.
Article in English | MEDLINE | ID: covidwho-1937454

ABSTRACT

Demand has outstripped healthcare supply during the coronavirus disease 2019 (COVID-19) pandemic. Emergency departments (EDs) are tasked with distinguishing patients who require hospital resources from those who may be safely discharged to the community. The novelty and high variability of COVID-19 have made these determinations challenging. In this study, we developed, implemented and evaluated an electronic health record (EHR) embedded clinical decision support (CDS) system that leverages machine learning (ML) to estimate short-term risk for clinical deterioration in patients with or under investigation for COVID-19. The system translates model-generated risk for critical care needs within 24 h and inpatient care needs within 72 h into rapidly interpretable COVID-19 Deterioration Risk Levels made viewable within ED clinician workflow. ML models were derived in a retrospective cohort of 21,452 ED patients who visited one of five ED study sites and were prospectively validated in 15,670 ED visits that occurred before (n = 4322) or after (n = 11,348) CDS implementation; model performance and numerous patient-oriented outcomes including in-hospital mortality were measured across study periods. Incidence of critical care needs within 24 h and inpatient care needs within 72 h were 10.7% and 22.5%, respectively and were similar across study periods. ML model performance was excellent under all conditions, with AUC ranging from 0.85 to 0.91 for prediction of critical care needs and 0.80-0.90 for inpatient care needs. Total mortality was unchanged across study periods but was reduced among high-risk patients after CDS implementation.

2.
Ann Intern Med ; 174(1): 33-41, 2021 01.
Article in English | MEDLINE | ID: covidwho-1067966

ABSTRACT

BACKGROUND: Risk factors for progression of coronavirus disease 2019 (COVID-19) to severe disease or death are underexplored in U.S. cohorts. OBJECTIVE: To determine the factors on hospital admission that are predictive of severe disease or death from COVID-19. DESIGN: Retrospective cohort analysis. SETTING: Five hospitals in the Maryland and Washington, DC, area. PATIENTS: 832 consecutive COVID-19 admissions from 4 March to 24 April 2020, with follow-up through 27 June 2020. MEASUREMENTS: Patient trajectories and outcomes, categorized by using the World Health Organization COVID-19 disease severity scale. Primary outcomes were death and a composite of severe disease or death. RESULTS: Median patient age was 64 years (range, 1 to 108 years); 47% were women, 40% were Black, 16% were Latinx, and 21% were nursing home residents. Among all patients, 131 (16%) died and 694 (83%) were discharged (523 [63%] had mild to moderate disease and 171 [20%] had severe disease). Of deaths, 66 (50%) were nursing home residents. Of 787 patients admitted with mild to moderate disease, 302 (38%) progressed to severe disease or death: 181 (60%) by day 2 and 238 (79%) by day 4. Patients had markedly different probabilities of disease progression on the basis of age, nursing home residence, comorbid conditions, obesity, respiratory symptoms, respiratory rate, fever, absolute lymphocyte count, hypoalbuminemia, troponin level, and C-reactive protein level and the interactions among these factors. Using only factors present on admission, a model to predict in-hospital disease progression had an area under the curve of 0.85, 0.79, and 0.79 at days 2, 4, and 7, respectively. LIMITATION: The study was done in a single health care system. CONCLUSION: A combination of demographic and clinical variables is strongly associated with severe COVID-19 disease or death and their early onset. The COVID-19 Inpatient Risk Calculator (CIRC), using factors present on admission, can inform clinical and resource allocation decisions. PRIMARY FUNDING SOURCE: Hopkins inHealth and COVID-19 Administrative Supplement for the HHS Region 3 Treatment Center from the Office of the Assistant Secretary for Preparedness and Response.


Subject(s)
COVID-19/mortality , Hospital Mortality , Hospitalization , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Disease Progression , Female , Humans , Infant , Male , Middle Aged , Pandemics , Retrospective Studies , Risk Factors , SARS-CoV-2 , United States/epidemiology
3.
PLoS One ; 15(12): e0244555, 2020.
Article in English | MEDLINE | ID: covidwho-1004466

ABSTRACT

BACKGROUND: Global health security (GHS) and universal health coverage (UHC) are key global health agendas which aspire for a healthier and safer world. However, there are tensions between GHS and UHC strategy and implementation. The objective of this study was to assess the relationship between GHS and UHC using two recent quantitative indices. METHODS: We conducted a macro-analysis to determine the presence of relationship between GHS index (GHSI) and UHC index (UHCI). We calculated Pearson's correlation coefficient and the coefficient of determination. Analyses were performed using IBM SPSS Statistics Version 25 with a 95% level of confidence. FINDINGS: There is a moderate and significant relationship between GHSI and UHCI (r = 0.662, p<0.001) and individual indices of UHCI (maternal and child health and infectious diseases: r = 0.623 (p<0.001) and 0.594 (p<0.001), respectively). However, there is no relationship between GHSI and the non-communicable diseases (NCDs) index (r = 0.063, p>0.05). The risk of GHS threats a significant and negative correlation with the capacity for GHS (r = -0.604, p<0.001) and the capacity for UHC (r = -0.792, p<0.001). CONCLUSION: The aspiration for GHS will not be realized without UHC; hence, the tension between these two global health agendas should be transformed into a synergistic solution. We argue that strengthening the health systems, in tandem with the principles of primary health care, and implementing a "One Health" approach will progressively enable countries to achieve both UHC and GHS towards a healthier and safer world that everyone aspires to live in.


Subject(s)
Global Health/statistics & numerical data , Universal Health Insurance/statistics & numerical data , Child , Child Health , Female , Health Expenditures , Humans , Male , Maternal Health
4.
Chest ; 159(3): 1076-1083, 2021 03.
Article in English | MEDLINE | ID: covidwho-799192

ABSTRACT

The coronavirus disease 2019 pandemic may require rationing of various medical resources if demand exceeds supply. Theoretical frameworks for resource allocation have provided much needed ethical guidance, but hospitals still need to address objective practicalities and legal vetting to operationalize scarce resource allocation schemata. To develop operational scarce resource allocation processes for public health catastrophes, including the coronavirus disease 2019 pandemic, five health systems in Maryland formed a consortium-with diverse expertise and representation-representing more than half of all hospitals in the state. Our efforts built on a prior statewide community engagement process that determined the values and moral reference points of citizens and health-care professionals regarding the allocation of ventilators during a public health catastrophe. Through a partnership of health systems, we developed a scarce resource allocation framework informed by citizens' values and by general expert consensus. Allocation schema for mechanical ventilators, ICU resources, blood components, novel therapeutics, extracorporeal membrane oxygenation, and renal replacement therapies were developed. Creating operational algorithms for each resource posed unique challenges; each resource's varying nature and underlying data on benefit prevented any single algorithm from being universally applicable. The development of scarce resource allocation processes must be iterative, legally vetted, and tested. We offer our processes to assist other regions that may be faced with the challenge of rationing health-care resources during public health catastrophes.


Subject(s)
COVID-19 , Civil Defense/organization & administration , Health Care Rationing , Health Workforce , Public Health/trends , Resource Allocation , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/therapy , Change Management , Disaster Planning , Health Care Rationing/methods , Health Care Rationing/standards , Humans , Intersectoral Collaboration , Maryland/epidemiology , Resource Allocation/ethics , Resource Allocation/organization & administration , SARS-CoV-2 , Triage/ethics , Triage/organization & administration
SELECTION OF CITATIONS
SEARCH DETAIL